Unicyclic graphs with large energy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unicyclic graphs with maximal energy

Let G be a graph on n vertices and let λ1, λ2, . . . , λn be its eigenvalues. The energy of G is defined as E(G) = |λ1| + |λ2| + · · · + |λn|. For various classes of unicyclic graphs, the graphs with maximal energy are determined. Let P 6 n be obtained by connecting a vertex of the circuit C6 with a terminal vertex of the path Pn−6. For n 7, P 6 n has the maximal energy among all connected unic...

متن کامل

Unicyclic Graphs with equal Laplacian Energy

We introduce a new operation on a class of graphs with the property that the Laplacian eigenvalues of the input and output graphs are related. Based on this operation, we obtain a family of Θ( √ n) noncospectral unicyclic graphs on n vertices with the same Laplacian energy.

متن کامل

On Unicyclic Reflexive Graphs

If G is a simple graph (a non-oriented graph without loops or multiple edges), its (0, 1)-adjacency matrix A is symmetric and roots of the characteristic polynomial PG (λ) = det (λI −A) (the eigenvalues of G, making up its spectrum) are all real numbers, for which we assume their non-increasing order: λ1 ≥ λ2 ≥ · · · ≥ λn. In a connected graph for the largest eigenvalue λ1 (the index of the gra...

متن کامل

Unicyclic graphs with exactly two main eigenvalues

An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero, and it is well known that a graph has exactly one main eigenvalue if and only if it is regular. In this work, all connected unicyclic graphs with exactly two main eigenvalues are determined. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

On reverse degree distance of unicyclic graphs

The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2011

ISSN: 0024-3795

DOI: 10.1016/j.laa.2011.03.013